21 • Electrochemistry

- Electrochemistry is all oxidation-reduction chemistry. Leo Ger OIL RIG
 Oxidation: loss of e⁻; ox # increases
 Reduction: gain of e⁻; ox # decreases
 example: Fe²⁺ + 2e⁻ → Fe(s) (reduction)
- 2. In a reaction, the **oxidizing agent** gets **reduced**; the **reducing agent** gets **oxidized**.
- 3. Balancing redox reactions: oxidation number method
 - assign ox #'s to every atom
 - determine changes in ox #
 - balance changes
 - balance all atoms except H & O
 - balance O's (add H₂O's)
 - balance H's (add H⁺'s)
 - adjust for basic solution if needed

half-reaction method.

- determine oxidation & reduction
- write two separate half-reactions
- balance all atoms except H & O
- balance O's (add H₂O's)
- balance H's (add H⁺'s)
- add e⁻ 's to more positive side
- balance e's between half-reactions
- combine half-reactions
- adjust for basic solution if needed
- 4. Electricity can either **cause** a reaction (electrolysis, electrolytic cell) or can be **produced by** the reaction (Galvanic cell, electrochemical cell, Voltaic cell).

5. Electrolysis / Electroplating

coulomb (C) = an amount of charge amp = current = charge per second 1 amp \cdot 1 second = 1 Coulomb 1 C / amp \cdot s Faraday constant, F: 1 mole e⁻ = 96,500 C

BLUFFER'S GUIDE

- 6. Electrolysis calculations begin with amp·s *Example*: How many moles of copper metal can be plated using a 10 amp circuit for 30 s?
 10amp x 30s x <u>1C</u> x <u>1 mol e-</u> x <u>1 mol Ag</u> = 1 amp·s 96500C 1 mol e-= 3.1 x 10⁻³ mole Ag
- Spontaneous redox reactions (unlike electrolysis/electroplating) can simply occur (as in the ornament lab) or can be separated so the oxidation and reduction occur in different containers (half-cells). In this way, the electrons must move through an outside wire (this is an electrochemical cell—a battery).
- 8. Every atom has a different "potential" to accept electrons... "reduction potential" Ag⁺(aq) + e⁻ → Ag(s) E° = +0.80 v

 $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s) \quad E^{\circ} = -0.40 \text{ v}$

These are measured by comparing every chemical to the same "standard half-cell."

The reduction with the more positive E° value will occur as written; the other reaction will reverse (oxidation).

Ex: $2Ag^+ + Cd \rightleftharpoons 2Ag + Cd^{2+}$

The **difference** in the E° values is the voltage of a cell made using these two reactions.

Ex: +0.80 v - (-0.40 v) = 1.20 volts*NOTE that you do <u>not</u> multiply the Cd voltage by 2. Comparing every cell to the same standard cell accounts for this.*

- 9. Any change that drives the reaction forward will **increase** the cell's voltage.
- 10. In *all* electrochemical cells: Oxidation occurs at the Anode Reduction occurs at the Cathode